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Metabolic syndrome (MS) is a cluster of different diseases, namely central obesity,
hypertension, hyperglycemia, and dyslipidemia, together with a pro-thrombotic
and pro-inflammatory state. These metabolic abnormalities are often associated
with an increased risk for cardiovascular disease (CVD) and cancer. Dietary and
lifestyle modifications are currently believed more effective than pharmacological
therapies in the management of MS patients. Nevertheless, the relatively low
grade of compliance of patients to these recommendations, as well as the failure
of current therapies, highlights the need for the discovery of new pharmacological
and nutraceutic approaches. A deeper knowledge of the patho-physiological
events that initiate and support the MS is mandatory. Lipid-sensing nuclear
receptors (NRs) are the master transcriptional regulators of lipid and carbohydrate
metabolism and inflammatory responses, thus standing as suitable targets. This
review focuses on the physiological relevance of the NRs (peroxisome proliferator-
activated receptors, liver X receptors, and farnesoid X receptor) in the control of
whole-body homeostasis, with a special emphasis on lipid and glucose metabolism,
and on the relationships between metabolic unbalances, systemic inflammation,
and the onset of CVD. Future perspectives and possible clinical applications are
also presented.  2011 John Wiley & Sons, Inc. WIREs Syst Biol Med 2011 DOI: 10.1002/wsbm.137

INTRODUCTION

Metabolic Syndrome

Metabolic Syndrome (MS) is a cluster of
clinical disorders including central obesity,

hypertension, hyperinsulinemia and insulin resistance
(leading to impaired fasting glycemia and glucose
tolerance and to type 2 diabetes), atherogenic
dyslipidemia [low levels of high-density lipoprotein
cholesterol (HDL-c), high levels of triglycerides
(TG), and low-density lipoprotein (LDL) particles],
inflammation, and a pro-thrombotic state.1,2 When
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clustered together, these clinical conditions may
amplify or confer additive risk for the development
of cardiovascular disease (CVD). Over the past
decade, several classification systems have been
proposed to describe the clinical features of MS.1,3–6

The National Cholesterol Education Program Adult
Treatment Panel III (NCEP-ATPIII)1 is currently
accepted as the most accurate definition in terms
of sensitivity and specificity. Although the etiology
of MS is still unknown, there is consensus that
both genetic background and unhealthy lifestyle
habits (insufficient physical exercise and calorie
overload) contribute coordinately to the onset of
MS, resulting in an increased risk for CVD, cancer,
and thrombosis.2 There is a general agreement
that lifestyle modifications may have the potential
to more effectively ameliorate most of the clinical
features of MS. Nevertheless, several pharmacological
approaches, including thiazolidinediones (TDZ),
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cannabinoid CB1 receptor antagonists, ezetimibe,
and fibrates, have been extensively used. There is
an increasing interest in elucidating the metabolic
pathways underlying the maintenance of energy
homeostasis and, in this regard, nuclear receptors
(NRs) and their role in the metabolic homeostasis
have received great attention over the past decade.
The purpose of this review is to provide insights into
the metabolic pathways governed by lipid-sensing
NRs, and endorse them as feasible and promising
therapeutic targets in the management of MS.

Nuclear Receptors
NRs are key players in the coordination of the
development, metabolism, circadian rhythms, cell
growth, and differentiation. NRs are transcription
factors transducing different signals into modulation
of gene transcription,7 thus participating in the con-
trol of all complex processes in living organisms.
NRs show considerable specificity in their activation
and tissue-specific expression,8 and they can work as
monomers, homodimers, and heterodimers.7 In the
human genome 48 NRs have been identified, whereas
in rodents there are 49.7 NRs are called ‘orphans’
when the endogenous ligands are unknown,9,10 and
‘true orphans’ when NRs regulate the transcription
independent of binding to specific ligands.11,12 Some
NRs are regulated by small lipophilic ligands [i.e.,
hormones, vitamins, dietary lipids, bile acids (BAs),
xenobiotics, etc.].9,12,13 In this review, we focus on
the ‘adopted orphan’ lipid sensors, namely the per-
oxisome proliferator-activated receptors (PPARs), the
liver X receptors (LXRs), and the farnesoid X receptor
(FXR), which all form heterodimers with the retinoid
X receptors (RXR). NRs are characterized by a con-
served modular structure including an amino-terminal
ligand-independent activation function domain (AF-
1), a DNA-binding domain (DBD), and a region
involved in protein–protein interaction and transcrip-
tional activation of target-gene expression. The DBD
is composed of two zinc-finger motifs, which bind a
specific hormone response element (HRE).14,15 HREs
contain the canonical sequence AGGTCA that can
be present alone or repeated. Thus, HREs can differ
in terms of extension, duplications, and orientation
of the repeats (direct, inverted, or everted)7; as a
consequence, HREs can be selective for a given
NR or for a class of receptors. The ligand-binding
domain (LBD) contains a ligand-dependent activa-
tion function-2 (AF-2) motif that mediates coactivator
recruitment.13 In the absence of ligand, the LBD of
many NRs is bound to transcriptional corepressor
complexes that cause chromatin condensation and

gene silencing. Ligand binding to NRs induces a
change in NR three-dimensional conformation, which
results in the dissociation of corepressors and in a
subsequent recruitment of tissue-specific coregulators
(allowing a fine-tuning of the physiologic response to
ligand binding) and transcription machineries.7,11,12

PEROXISOME PROLIFERATOR-
ACTIVATED RECEPTORS

Peroxisome proliferator-activated receptors are
ligand-inducible transcription factors acting as ‘fatty
acid sensors’ to control metabolic programs and to
regulate energy homeostasis.16 PPARs form obligate
heterodimers with RXRs and bind to specific con-
sensus DNA sites termed PPAR response elements
(PPREs). PPREs are composed of direct repeats (DRs)
of hexameric sequences AGGTCA, interspaced only
by a single nucleotide spacer (DR-1 motif), located in
the promoter/enhancer region of target genes. X-ray
crystal analyses revealed that, compared with other
NRs, the PPAR ligand-binding pocket is unusually
large (about 1300 Å) and can accommodate a wide
diversity of natural and synthetic compounds, includ-
ing native and modified (oxidized and nitrated) fatty
acids (FA), eicosanoids, derivatives of polyunsaturated
FA, fibrates, and TDZ.17–23 Three PPAR isotypes exist
in mammals: PPARα (NR1C1), PPARβ/δ (NR1C2),
and PPARγ (NR1C3). Although the three PPAR sub-
types share a high degree of sequence and structure
homology, they are characterized by a very specific tis-
sue distribution and unique physiological functions.24

In the following paragraphs, we focus on the phys-
iological functions of PPAR subtypes with a special
emphasis on those related to the key features of MS
(i.e., elevated TG, low HDL-c, and glucose imbalance).

PPARα
In the late 1960s peroxisome proliferation and hep-
atomegaly were first reported occurring in rat livers
when treated with clofibrate or related compounds
(termed peroxisome proliferators) and, several years
later (1990), the first receptor for these molecules was
cloned and named PPARα.25 PPARα acts as mas-
ter transcriptional regulator of FA utilization and is
prominently expressed in the liver and, to a lesser
extent, in kidney, heart, skeletal muscle, small intes-
tine, brown adipose tissue (BAT), immune cells, and
endothelium.26,27 Fibrates bind to PPARα in the high
micromolar range (that may explain why large doses
are required for clinical use) and to a lesser extent
to PPARγ and PPARβ/δ contributing to some of the
metabolic effects. Given the ability of PPARα agonists
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to modulate both TG and HDL metabolism,28,29

fibrates are currently used for the management of pri-
mary hypertriglyceridemia, combined hyperlipidemia,
type 3 dyslipoproteinemia, and lipid abnormalities
associated with type 2 diabetes and MS.30

PPARα and Triglyceride Metabolism
The major physiological function of PPARα is to
promote FA utilization, and the first PPRE has been
identified in the 5′-flanking sequence of the rat acyl-
CoA oxidase (ACOX) gene.31 PPARα target genes
are involved in FA transport and uptake [FA trans-
port protein (FATP), CD36, and carnitine-palmitoyl-
transferase 1 (CPT-1)] and β-oxidation (ACOX,
thiolase, acyl-CoA-dehydrogenase, cytochrome P450-
ω-hydroxylase), and their transcriptional activation
contributes to FA homeostasis in lipid-metabolizing
tissues such as liver, heart, and muscle (Figure 1).32–36

Accordingly, PPARα knockout animals exhibited fatty
liver phenotype (steatosis), peripheral tissue lipid accu-
mulation, adipocytes hypertrophy, and late onset
obesity (despite a stable caloric intake).37–39 Sev-
eral proteins involved in the apolipoprotein (apo)
B-containing lipoprotein metabolism, such as lipopro-
tein lipase (LPL), apoCIII, apoAV, and proprotein
convertase subtilisin/type 9 (PCSK9) are PPARα tar-
get genes.40–45 The well-documented TG-lowering

properties of PPARα agonists result from both an
increased lipolysis and clearance of TG-rich lipopro-
teins (via activation of LPL and inhibition of apoCIII)
and a reduced availability of free FA (FFAs) for
TG synthesis (via enhanced β-oxidation). PPARα

activation influences the circulating levels of apoB100-
containing lipoproteins (via increased VLDL-apoB100
catabolism), as well as their distribution profile (via
lower levels of small dense LDL and higher concentra-
tions of large buoyant LDL), although the outcomes
are not fully elucidated.46,47

PPARα and HDL Metabolism
PPARα agonists modulate the plasma levels of HDL-c
through an increased HDL production rate, higher
apoAI mRNA levels, stimulation of ATP-binding
cassette transporter A1 (ABCA1)-mediated cholesterol
efflux in macrophages, and reduced cholesteryl ester
transfer protein (CETP) levels.30,48 Interestingly,
differential PPARα-dependent effects of gemfibrozil
and fenofibrate on hepatic apoAI expression have
been reported. Both raise HDL levels, while only
fenofibrate (full PPARα agonist) increases apoAI
concentrations.49 Furthermore, it is not clear if an
higher apoAI production observed upon fenofibrate
treatment50 affects the more mature (large) HDL
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FIGURE 1 | Schematic representation of peroxisome proliferator-activated receptor (PPAR)α transcriptional activation (left): as a heterodimer of
retinoid X receptors (RXR), PPARα binds the PPAR response elements (PPREs), containing direct repeats (DR) of hexameric sequences AGGTCA,
interspaced only by a single nucleotide spacer (DR-1). Effects of PPARα activation in tissues involved in metabolic homeostasis (right): PPARα reduces
plasma triglycerides (TG) by inducing fatty acid (FA) transport and oxidation in liver, adipose tissue, and muscle. In addition, PPARα induces lipolysis
in adipocytes and hepatocytes. PPARα also modulates lipoprotein metabolism both in the liver, where PPARα induces ApoAI expression and
clearance of TG-rich lipoproteins, and in macrophages, where PPARα promotes the efflux of cholesterol, the uptake of oxidized LDL, and the
expression of lipoprotein lipase (LPL), thus promoting lipoprotein remodeling. In the endothelium, PPARα exerts athero-protective properties,
inhibiting the release of adhesion molecules and inflammatory cytokines, while enhancing vascular remodeling.
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that can promote the athero-protective process of
the reverse cholesterol transport (RCT).

PPARα Clinical Usefulness
Although fibrates, both in monotherapy and
in combination with statins (HMG-CoA-reductase
inhibitors) or ezetimibe (cholesterol absorption
inhibitor), are effective on both TG and HDL
metabolism,51–54 the currently available fibrates are
weak ligands for PPARα and there is a quest for
both highly selective PPARα agonists and SPPARMs
(selective PPAR modulators). Nissen et al. provided
the first description of the beneficial effects of a
powerful (3000 times more potent than fenofibrate)
and highly selective PPARα agonist (LY518674) that,
when given to patients with hypercholesterolemia,
lowered plasma TG and raised HDL-c and LDL-c.55

More recently, LY518674 was given to subjects with
MS for 8 weeks; along with a 23% reduction in
plasma TG and no change in HDL concentration,
LY compound was able to increase both apoAI and
apoAII production rate by 31 and 71%, respectively,
as well as the fractional catabolic rate of these
two apolipoproteins.56 Recently, Chakravarthy et al.
identified a new endogenous ligand of PPARα, the
phospholipid (PL) palmitoyl-2-oleoyl-sn-glycerol-3-
phosphocholine (16:0/18:1-GPC), that exhibited a
weak activation on PPARβ/δ but not on PPARγ

in vitro. This ligand seems to be indispensable for
hepatic PPARα activation and its function during
fasting.57 The clinical relevance of fibrate use in
type 2 diabetes and MS is still under debate and
requires further investigations. Although in clinical
trials involving type 2 diabetes patients, such as
Diabetes Atherosclerosis Intervention Study (DAIS)
and Fenofibrate Intervention and Event Lowering
in Diabetes (FIELD), fenofibrate appeared effective
on the progression of diabetes-related microvascular
disease, it is not clear whether fibrates alone may
efficiently impact the lipid abnormalities associated
with MS, or if a combination with other lipid-
lowering drugs, such as statins or insulin-sensitizing
agent metformin, should be always recommended in
the management of the cardiovascular risk.58 Future
insights may come from ongoing trials such as Action
to Control Cardiovascular Risk in Diabetes Trial or
studies aiming to test more selective PPARα agonists
in both in vitro and in animal models. From a
translational point of view, a comment has to be
made on the existence of species differences (mostly
rodent vs human),59,60 in apolipoprotein,61 and
glucose metabolism.62,63 The difference is also evident
in terms of carcinogenesis since a mouse-specific
cancer susceptibility profile of PPARα activation

is completely absent in the humanized model.64

At present, the mechanisms responsible for PPARα

species differences are not fully elucidated; however, it
has been suggested that they may be due to differences
in the level of PPARα expression or in the functional
DNA-binding capacity or in PPREs found upstream
of critical target genes.59

PPARβ/δ
Since its cloning in 1992,65,66 PPARβ/δ has been the
focus of far less research, compared with PPARα

and PPARγ .67 PPARβ/δ exhibits a broad expression
pattern but is more abundantly expressed in lipid-
metabolizing tissues such as skeletal muscle, heart,
small intestine, and adipose tissue.68 PPARβ/δ has a
short N-terminal domain in which no bona fide ligand-
independent activation domain has been identified
so far, although a modulation of PPARβ/δ activity
by cAMP-dependent phosphorylation may occur via
this domain.69 Among the PPAR subtypes, PPAR β/δ
pocket is the smallest one and features a convoluted
space where the hydrocarbon tail of unsaturated
FA binds.70 Polyunsaturated FA [eicosapentaenoic
acid (EPA), arachidonic acid (ARA), and dihomo-
γ -linoleic acid], prostaglandin A1, E2, and D2
bind to PPARβ/δ at low concentrations (micromolar
range), whereas only prostacyclin (PGI) and its
stable analog (carba-prostacyclin) activate PPARβ/δ-
mediated transcription in a nanomolar range
of concentrations.71 Selective synthetic PPARβ/δ
agonists have been recently developed (GW501516,
GW0742), displaying both in vitro and in vivo a
1000-fold selectivity over the other PPAR isotypes.72

The PPARβ/δ gene is conserved between species, and
there are no studies of rare human genetic mutations;
however, PPARβ/δ polymorphism (e.g., rs2016520) is
associated with increased LDL-c and reduced HDL-c
concentrations, suggesting a role for this transcription
factor in human cholesterol metabolism.73 In addition,
the relationship between PPARβ/δ polymorphism
rs2016520 and the risk of showing three or more
components of the MS is influenced by dietary
habits.74 Finally, interaction between PPARβ/δ single
polymorphism and fasting plasma glucose levels and
body mass index has been shown as well.75 The role
of PPARβ/δ in adiposity, skeletal muscle physiology,
and lipoprotein regulation identified this NR as
promising candidate for therapeutic intervention in
MS (Figure 2).

PPARβ/δ in Adipose Tissue
PPARβ/δ is expressed both in white adipose tissue
(WAT) and BAT where it controls thermogenesis, FA
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FIGURE 2 | Schematic representation of peroxisome proliferator-activated receptor (PPAR)β/δ transcriptional activation (left): as a heterodimer of
retinoid X receptors (RXR), PPARβ/δ binds the PPAR response elements (PPREs), containing direct repeats (DR) of hexameric sequences AGGTCA,
interspaced only by a single nucleotide spacer (DR-1). Effects of PPARβ/δ activation in tissues involved in metabolic homeostasis (right): in adipose
tissue and muscle, PPARβ/δ induces fatty acid (FA) transport and oxidation, mitochondrial activity, and thermogenesis, thus increasing energy
expenditure. In muscle, PPARβ/δ activation ameliorates the endurance capacity. In the liver, PPARβ/δ inhibits glucose output, thereby contributing to
the peripheral glucose homeostasis. PPARβ/δ also induces increased serum high-density lipoprotein (HDL) levels, leading to enhanced reverse
cholesterol transport (RCT), and reduced inflammation in the macrophages. These effects could further promote a PPARβ/δ-mediated cardiovascular
prevention.

transport, and oxidation and uncoupling of oxidative
phosphorylation through activation of its target
genes such as long-chain acyl-CoA dehydrogenase,
CPT-1, ACOX-1, long-chain acyl-CoA-synthetase,
and uncoupling protein-1 (UCP-1).67,76,77 In rodents,
PPARβ/δ adipose tissue-specific over-expression
protected from diet-induced obesity, triglyceride
accumulation in adipocytes, hypertriglyceridemia,
and hepatic steatosis.76 Administration of PPARβ/δ
agonist GW501516 was able to mimic the effects
of a constitutively active PPARβ/δ transgene in
obese murine models but not in rhesus monkeys,78

leaving unanswered the question whether PPARβ/δ
fat-specific activation may have a metabolic relevance
on the whole-body homeostasis.

PPARβ/δ in Muscle
Skeletal muscle is a key metabolic tissue accounting
for approximately 80% of insulin-stimulated glucose
uptake and, compared with liver and adipose tissue,
is subjected to an almost complete unidirectional flux
of FA with all imported FA oxidized rather than
stored and/or exported. Both obesity and insulin
resistance are linked to a decrease in the proportion
of oxidative slow twitch (type 1) fibers in skeletal
muscle.79,80 PPAR β/δ expression in skeletal muscle
is 10–50 fold higher compared with that of PPARα

or PPARγ and has been exclusively found in type
1 fibers that mainly use mitochondrial oxidative
metabolism for energy production.81,82 PPARβ/δ

skeletal muscle-specific deletion was found associated
with weight gain, insulin resistance, and reduced
FA oxidation.83 Conversely, muscle-specific over-
expression protected mice from diet-induced obesity81

and was accompanied by muscle fiber type remodeling
that ameliorated insulin sensitization. Of note, the
therapeutic potential of a reprogramming of muscle
endurance by targeting the AMPK-PPARδ signaling
axis via orally active PPARδ agonists (GW501516)
has been recently reported. This approach may hold
promise in regard to the management of clinical
conditions where exercise is recommended, such as
obesity and MS.84

PPARβ/δ and Lipoprotein Metabolism
Both animal and human studies have provided
compelling evidence of a beneficial role of PPARβ/δ
on lipoprotein metabolism. In obese as well as
in hyper-cholesterolemic mouse models, PPARβ/δ
agonist GW501516 increased HDL-c concentrations
up to 50% along with a reduction of small dense LDL
levels.85–87 Obese rhesus monkeys have been used as
model of human obesity and metabolic disorders and
used in studies aimed to assess PPARβ/δ benefit on
HDL metabolism.78,88 PPARβ/δ agonist GW501516
given as single daily dose,88 or twice a day,78 raised
HDL-c levels up to 43 or 79%, respectively; lowered
LDL-c; and increased apoAI and apoAII levels and
HDL particle size. PPARs activate human apoAI gene
via a positive PPRE located in the apoAI promoter A
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site; whereas a three nucleotide difference makes the
positive PPRE nonfunctional in rodents, suggesting
that primates, but not mice, are a good model for
future investigations on the PPAR β/δ benefit on HDL-
c and the RCT.88,89 Although in some pilot studies in
both normo-lipidemic and moderately obese subjects
GW501516 treatment promoted a substantial increase
in HDL-c,90,91 the physiological relevance of PPAR
β/δ-mediated HDL-raising effect remains still elusive
in humans. Future insights may come from newer
agonists, such as KD-3010 and MBX-8025, currently
in the preclinical phases of research.92

PPARγ
First cloned in 1994,93 PPARγ was later identified as
the receptor for the TDZ class of insulin-sensitizing
drugs in 1995.94 The PPARγ gene is transcribed
into three splice variants (PPARγ 1, 2, and 3).
PPARγ 1 and 3 transcripts give rise to PPARγ 1
protein that is highly produced in WAT, immune
cells (macrophages and monocytes), intestine (colon),
liver, and kidney, whereas the PPARγ 2 transcript
encodes for a protein exclusively expressed in WAT
and BAT. Monounsaturated and polyunsaturated FA,
eicosanoid FA-derivatives [13-hydroxyoctadecanoic

acid (13-HODE) and 9-HODE; mainly found in
oxidized LDL] and prostanoids, such as 15-deoxy-
�12,14-prostaglandin J2 (15d-PGJ2) bind to PPARγ

with micromolar range affinity, as reported in radio-
ligand binding assays.95,96 The most highly studied
of the PPARγ ligands are the TDZs, pioglitazone,
and rosiglitazone, which have been approved for
clinical use in type 2 diabetes since 1997 in US. (the
physiological role of PPARγ activation is summarized
in Figure 3).

PPARγ in Adipose Tissue
In vitro and in vivo studies have shown that PPARγ is
the prime regulator of adipocyte differentiation.97,98

PPARγ -null fibroblasts and embryonic stem cells are
differentiation-incompetent in vitro99 and germ-line
deletion of PPARγ , as well as PPARγ hypomorphic
mice demonstrate the essential requirement for this
transcription factor in the formation of adipose tissue
in vivo.100 Naturally occurring PPARγ mutations in
humans support the key role of this NR in adipose tis-
sue development and distribution. Patients harboring
dominant-negative mutations in PPARγ gene exhibit
familial partial lipidystrophy type 3 (FPLD3), con-
comitant with severe insulin resistance, dyslipidemia
(elevated serum TGs and low HDL-c), and early onset
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FIGURE 3 | Schematic representation of peroxisome proliferator-activated receptor (PPAR)γ transcriptional activation (left): as a heterodimer of
retinoid X receptors (RXR), PPARγ binds the PPAR response elements (PPREs), containing direct repeats (DR) of hexameric sequences AGGTCA,
interspaced only by a single nucleotide spacer (DR-1). Effects of PPARγ activation in tissues involved in metabolic homeostasis (right): PPARγ

activation improves glucose metabolism, inducing insulin sensitivity (in the liver, skeletal muscle, and adipose tissue), increasing glucose uptake from
the muscle and reducing hepatic gluconeogenesis. In the adipose tissue, PPARγ also induces fatty acid (FA) uptake, adipogenesis, increased fat
storage, and a better lipid repartition into adipocytes, leading to the formation of small, newly formed, and active adipocytes. Nevertheless, PPARγ

increases the production of adiponectin from adipocytes, which is negatively correlated to metabolic unbalances and MS. In macrophages, PPARγ

also induces an increased M2/M1 ratio (thus inhibiting inflammation) and contributes to an enhanced uptake of oxidized low-density lipoprotein
(LDL). In addition, PPARγ regulates the transcription of the liver X receptor (LXR), lipoprotein lipase (LPL), and apolipoprotein E (apoE), further
preventing atherosclerosis.
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hypertension.101–103 Common (e.g., PPARγ Pro12Ala
polymorphism) and rare (loss-of-function mutations)
variants in the gene encoding PPARγ provide addi-
tional genetic evidence of the central role of PPARγ in
the MS.104–107 The finding that TDZs act as high
affinity PPARγ agonists validated the efficacy of
PPARγ modulation in the management of MS.108

The TDZs are able to improve insulin sensitivity
through increased lipid uptake and storage, decreased
serum FFA and TG, reduced hepatic gluconeogenesis,
increased peripheral glucose absorption and enhanced
energy expenditure.108 Studies in vivo had shown that
WAT is the primary tissue responsible for the ther-
apeutic effects of TDZs since mice lacking adipose
tissue are refractory to the TDZ glucose-lowering
effect. Additionally, PPARγ adipose-specific knock-
out mice are insulin-resistant and unresponsive to
TDZs.109–111 PPARγ activation in adipocytes stimu-
lates a wide array of genes involved in FA uptake and
storage including LPL, FATP-1, FA binding protein-4
(FABP-4), acyl-CoA synthase (ACS), perilipin, cell
death-inducing DNA fragmentation factor subunit
alpha (DFFA)-like effector A (CIDEA), CD36, and
phosphoenolpyruvate-carboxykinase (PEPCK).112–116

Adipocyte PPARγ activation leads to a lipid repar-
titioning from liver and skeletal muscle into fat,
thus, reducing the circulating levels of FFA and
eliminating the detrimental effects of lipid load-
ing on insulin signaling (the so-called ‘lipid steal
phenomenon’).117 PPARγ activation promotes a fat
redistribution with an expansion of adiposity in the
subcutaneous adipose tissue at the expense of visceral
fat,118,119 contributing to the weight gain observed
in patients treated with TDZs compared with those
receiving sulphonylurea.120 In addition, PPARγ acti-
vation in adipose tissue enhances the production of
adiponectin,121 promoting FFA oxidation and insulin
sensitivity via stimulation of AMP-activated protein-
kinase in skeletal muscle and through inhibition of
PEPCK in the liver.

PPARγ and Inflammation
Many lines of evidence support the link between
hepatic inflammation and insulin resistance122 and
a family of suppressors of cytokine signaling (SOCS)
has been shown to be involved in both inflammation
and insulin resistance. Chronic PPARγ activation by
pioglitazone in high-cholesterol fructose diet-fed rats
improved insulin sensitivity by decreasing the hep-
atic expression of SOCS3, tumor necrosis factor-α
(TNF-α) and interleukin-6 (IL-6).123 Along with the
aforementioned effects in the liver and skeletal mus-
cle, PPARγ activation enhances glucose transporter
member 2 (GLUT2) expression in pancreatic β-cells,

leading to an augmented insulin secretion.124–126 Obe-
sity and insulin resistance, key features of the MS,
have been consistently associated with a state of low-
grade inflammation which is caused likely by both
adipocyte hypertrophy and macrophage infiltration
into adipose tissue.127 A polarization of adipose-
resident macrophages from M2 (alternatively acti-
vated phenotype, less inflammatory) toward an M1
phenotype, characterized by enhanced secretion of
pro-inflammatory mediators (TNF-α, IL-6) during
diet-induced obesity, has been reported.128 PPARγ

is highly expressed in activated macrophages and is
markedly induced upon IL-4 stimulation.129,130 Ode-
gaard et al. elegantly showed that macrophage PPARγ

is required for maturation of alternatively activated
macrophages and PPARγ disruption in myeloid cells
impairs the alternative macrophage activation, predis-
posing mice to development of high fat diet-induced
obesity, insulin resistance, glucose intolerance, and
muscle mitochondria dysfunction.131 A short-term
treatment with the PPARγ agonist rosiglitazone pro-
moted infiltration of M2 macrophages into adipose
tissue in high fat-fed mice.132 The inability to undergo
differentiation into M2 phenotype reported, when
macrophage PPARγ was genetically disrupted, was
found not only in high fat diet-fed animals but also in
normal low fat diet-fed animals.133 This finding indi-
cates that macrophage PPARγ expression might be
necessary to maintain an anti-inflammatory M2 phe-
notype and important for the achievement of the full
insulin-sensitizing effects of TDZ.134 The intriguing
link between insulin sensitivity, macrophage PPARγ ,
and adipose tissue has been seen in humans as well.
TDZ treatment improved insulin sensitivity and was
associated to a marked reduction of adipose tissue
CD68, monocyte chemoattractant protein-1 (MCP-1)
mRNA abundance, and circulating TNF-α levels.135

‘Janus-face’ of PPARγ Activation
Although extensively used in type 2 diabetes patients,
TDZs are not completely devoid of side effects
such as weight gain (∼2–3 kg per 1% glycosylated
hemoglobin that is lowered), anemia, pulmonary
edema, congestive cardiac failure, and increased risk
of myocardial infarction120; these outcomes will
further limit the clinical usefulness of these drugs.
To bypass the problem, it will be necessary to
dissect the relative contributions of adipose versus
non-adipose (macrophage, muscle, and liver) PPARγ

activation to the systemic insulin sensitization; for this
purpose, conditional PPARγ knockout mice have been
used.110,133,136,137 Unfortunately, these studies could
neither address the molecular basis for PPARγ action
in different cell types, nor how TDZs can increase
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the ability of target cells to sense insulin. In addition,
these studies did not circumvent all the complications
caused by the loss-of-function of adipose PPARγ ,
such as the rebounded increase of PPARγ expression
in liver and muscle.109,138 Recent studies addressed
some of the aforementioned gaps in our knowledge
of PPARγ biology and physiology.139–141 Selective
PPARγ activation in adipocytes, but not in
macrophages, is sufficient for whole-body insulin
sensitization equivalent to systemic TDZ treatment in
mice. These data offer an ‘adipocentric’ model, where
fat is not only a contributor, but a central player
in insulin sensitization,140 providing evidence for the
need of cell-restricted PPAR modulators. Intriguingly,
selective PPARγ modulators (SPARMs) can improve
insulin sensitivity without causing weight gain.142–144

The recent work by Lefterova et al. provides new
evidence for how cell-type-specific gene expression
may be achieved by a single NR.139

Future efforts need to be directed toward
the development of tissue-specific PPARγ agonists
that can retain insulin-sensitizing properties without
activating de novo adipogenesis and the consequent
increased subcutaneous adiposity. In this regard,
partial PPARγ /α agonists such as TDZ18 or small
molecules such as harmine may hold this promise in a
near future.112,145

LIVER X RECEPTORS

First identified in 1994 by screening a rat liver cDNA
library, LXRs were originally classified ‘orphans’, as
their natural ligands were unknown.146,147 Subse-
quently ‘adopted’, when oxidized cholesterol deriva-
tives, referred to as oxysterols, were shown to be
endogenous ligands,147,148 LXRs have emerged as
keystones in lipid, carbohydrate, and inflammatory
homeostasis.148–151 In mammals, two LXR isoforms
(LXRα and LXRβ) exist and both are highly expressed
in the liver and the intestine, where their physiological
roles have been best elucidated.152 LXRα (NR1H3) is
also expressed in WAT, macrophages, kidney, adrenal
glands, lung, and spleen, whereas LXRβ (NR1H2) is
ubiquitously expressed. LXRα and LXRβ not only
exert overlapping but also separate metabolic func-
tions, with the former being required for the control of
hepatic cholesterol metabolism and the latter being the
major regulator of glucose homeostasis and energy uti-
lization in both muscle and WAT (Figure 4).153 LXRs
bind to cognate LXR-responsive elements (LXREs),
consisting of DRs of the core sequence AGGTCA
separated by four nucleotides (DR-4)9,154 and to core-
pressors, such as silencing mediator of retinoic acid
and thyroid hormone receptor155 and NR corepressor

(N-CoR).156 As both LXRs form permissive het-
erodimers with the RXR, the complex can be activated
either by oxysterols or retinoids. The binding of lig-
ands results in conformational changes, allowing the
interaction of the LXR–RXR complex with coacti-
vators leading either to the transcription of target
genes or the trans-repression of other genes not con-
taining LXREs.157,158 LXR natural ligands include
22(R)-, 24(S)-, 27-, and 24(S),25-hydroxy cholesterol
at concentrations within the physiological range while
synthetic LXR ligands (T0 901317, GW3965) show
EC50 values for both isoforms in the low nanomolar
range.147,159

LXR and Cholesterol Homeostasis
Liver X receptors function as whole-body ‘choles-
terol sensors’ and most of their target genes in
liver, intestine, and macrophages play a crucial role
in the maintenance of cholesterol homeostasis and
atherosclerosis. LXR is expressed in macrophages,
being positively regulated by PPARγ , suggesting a
link between the macrophage ability to remove choles-
terol and the uptake of oxidized LDL.9 LXRα may
also induce its own transcript via an auto-regulatory
loop in human but not in murine macrophages.160,161

The identification of the role of LXR in choles-
terol efflux from macrophages via ABCA1 and
ABCG1 upregulation,162 and in the removal of
excess cholesterol from peripheral tissues via RCT,
pointed to a possible anti-atherosclerotic effect of
LXR activation.151,162–167 ABCA1 and ABCG1 medi-
ate cholesterol and PL efflux from macrophages to
lipid-poor lipoproteins and mature HDL, respectively,
leading to the formation of the lipid-enriched HDL
(i.e., HDL-2 and HDL-3 particles).168 ABCA1 muta-
tions cause the Tangier disease, a rare genetic disorder
characterized by the absence of HDL in plasma, the
accumulation of cholesterol in macrophages and an
increased incidence of CVD.169–172 LXR activation
cannot stimulate cholesterol efflux in fibroblasts from
Tangier disease patients, demonstrating that ABCA1 is
essential for the efflux pathway mediated by LXR.166

Additionally, the activation of both LXR isoforms
regulates apolipoprotein E (apoE) expression, both
in the liver and macrophages. On the other hand,
bone marrow transplantation from LXR-null mice
into apoE-null mice results in a massive aortic lipid
deposition.150,173 ApoE is an extracellular cholesterol
acceptor required for the hepatic uptake of chy-
lomicron remnants, VLDL and HDL, and serves as
extracellular acceptor for ABCA1-mediated choles-
terol efflux.150 The increase in HDL concentration
found upon LXR activation is the result of a coor-
dinate regulation of a series of proteins involved in
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FIGURE 4 | Schematic representation of liver X receptors (LXRs) transcriptional activation (left): as a heterodimer of retinoid X receptors (RXR),
LXRs bind the LXR response elements (LXREs), containing direct repeats (DR) of hexameric sequences AGGTCA, interspaced by four nucleotide
spacers (DR-4). Effects of LXRs activation in tissues involved in metabolic homeostasis (right): LXRs are the master regulators of cholesterol
metabolism. In the liver, LXRs promote cholesterol secretion in bile and its conversion to bile acids (BA), whereas inhibiting low-density lipoprotein
(LDL) cholesterol uptake. In the intestine, LXRs inhibit cholesterol absorption while promoting its secretion. LXRs also promote reverse cholesterol
transport (RCT) via an integrated mechanism involving the liver and intestine [increased high-density lipoprotein (HDL) biogenesis], macrophages
(increased efflux of cholesterol), and serum (enhanced RCT and lipoprotein remodeling). The activation of LXRs also reduces glucose concentrations in
blood (inhibiting hepatic gluconeogenesis, whereas increasing glucose uptake in muscle and adipose tissue), and enhances triglyceridemia
[promoting hepatic fatty acid (FA) synthesis]. Finally, LXRs negatively modulate inflammatory pathways in macrophages.

HDL formation and lipoprotein remodeling, such as
LPL, PL transfer protein (PLTP) and CETP, which
all are LXR target genes.150,152,173–175 Macrophage
LXR has been reported to be crucial for protec-
tion from atherosclerosis.163 LXR activation results in
NF-κB signaling suppression,176–178 and ultimately to
the repression of inflammatory genes [inducible nitric
oxide synthase (iNOS), cycloxygenase 2 (COX-2), IL-
6 and IL-1β, and matrix metallo-peptidase 9 (MMP-
9), tissue factor, and osteopontin], and chemokines
(MCP-1 and MCP-3).176–179 These are believed to be
additional players in atherogenesis and CVD.165

In the intestine, LXRs inhibit cholesterol absorp-
tion due to a reduced Niemann-Pick C1 like 1 gene
expression,180 and promote both sterol excretion
into feces via apical ABC transporter ABCG5 and
ABCG8 stimulation, and increase in HDL-c levels,
leading to reduced lipid deposition and atheroscle-
rosis development.181–183 Conversely, mutations in
ABCG5/G8 are associated with β-sitosterolemia,
which is characterized by increased sterol absorp-
tion and early onset atherosclerosis.183–185 Hepatic
LXR activation induces ABCA1,151,162 ABCG1,168

ABCG5, and ABCG8 thus enhancing biliary
cholesterol secretion.186–188 Accordingly, LXRα-null

mice accumulate cholesterol esters in the liver and
develop hepatomegaly when fed a cholesterol-enriched
diet.189,190 In rodent, but not in human liver, LXRα

also induces the expression of cytochrome P450 7
α-hydroxylase (CYP7A1), the rate-limiting enzyme
for cholesterol conversion to BAs.191,192 Additionally,
LXRs mediate an enhanced transcription of the E3-
ubiquitin Inducible Degrader of the LDLR (Idol) 1, a
protein able to induce LDL receptor (LDLR) degra-
dation and that of other LDLR family members, such
as the VLDL receptor (VLDLR) and apoE receptor
2 (ApoER2),193,194 thereby further preventing hepatic
lipid accumulation.

LXR and Glucose Homeostasis
The close interplay of lipid and carbohydrate
metabolism as well as the identification of LXR
as mediators of insulin action in the liver sug-
gested a possible role of LXR in glucose home-
ostasis. Administration of LXR agonists to obese,
insulin-resistant mice inhibited hepatic gluconeo-
genesis via a decreased expression of PEPCK,
fructose-1,6-bisphosphatase (FBP-ase) and glucose-
6-phosphatase (G6P), improving both glucose toler-
ance and insulin sensitivity.195,196 Nevertheless, both
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hepatic gluco-kinase and insulin-dependent glucose
transporter (GLUT4) are direct targets of LXRs
in adipose tissue, suggesting that an increased glu-
cose uptake and catabolism in this tissue could also
contribute to the improved insulin sensitivity in ani-
mals receiving LXR agonists.195,196 LXRβ, and to
a lesser extent LXRα, are expressed in both human
and murine pancreatic islet cells where they enhance
glucose-dependent insulin secretion,197 an effect that
is impaired in LXRβ knockout mice.198 Collectively,
the ability of LXRs to modulate glucose homeosta-
sis results from a downregulation of hepatic gluco-
neogenesis, an increased insulin-stimulated glucose
uptake from skeletal muscle and adipose tissue and an
enhanced insulin secretion from the pancreas.

LXR and FA Metabolism
LXRs also regulate hepatic FA metabolism,151 as they
enhance the expression of the master transcriptional
regulator of FA and TG biosynthesis, sterol regulatory
element binding protein-1c (SREBP-1c),199 leading to
increased levels of FA synthase, ACS, and stearoyl-
CoA desaturase 1 (SCD1) and repression of hep-
atic apoAV.149,173,200,201 In addition, LXRs increase
the expression of the glucose-sensitive transcription
factor carbohydrate-responsive element binding pro-
tein (ChREBP).202 By regulating both SREBP-1c and
ChREBP, LXRs contribute to the induction of FA
synthesis in response to glucose and insulin.202,203

Accordingly, the LXR-driven fatty liver phenotype is
completely abolished in LXR-null mice.151 The hep-
atic steatosis developed upon LXR activation, along
with the observation that LXR agonist administra-
tion to a diabetic mouse model (db/db) resulted in a
severe lipogenic disease,149,204 are the major pitfalls
of pharmacological LXR activation. Several strategies
have been proposed to avoid both the lipogenic effects
and the LXR-mediated induction of CETP (correlat-
ing with increased LDL cholesterol levels) in humans
but not in mice, which do not express CETP.205

The clinical relevance of LXR agonists for
treatment of CVD remains to be established, as a
direct extrapolation of evidences from the murine
model to humans are limited by species-specific
differences in lipoprotein metabolism and target
genes.163,206,207 Human studies addressing the cardio-
protective potential of LXR activation are needed.

FARNESOID X RECEPTOR

The FXR (NR1H4), cloned in 1995,208 was initially
believed sensing farnesol and juvenile hormone III.209

In 1999, cholic acid (CA) and chenodeoxycholic acid
(CDCA) were shown to activate FXRα.9,210–212 As

the conversion of cholesterol to BAs is the major
pathway for elimination of cholesterol,191 FXR regu-
lates both cholesterol and BA homeostasis. Bile acids
are central mediators of the digestion and absorp-
tion of lipids, cholesterol, and lipid-soluble vitamins,
and prevent the precipitation of cholesterol crystals
in bile.213,214 As 95% of BAs are reabsorbed by
enterocytes and recirculate, and increased BA levels
can be toxic, a feedback modulation of BA synthe-
sis and absorption is essential for cholesterol and BA
depletion.191 Two FXR genes have been identified:
FXRα and FXRβ. FXRβ is believed to be a lanosterol
sensor in rodents, rabbits, and dogs, but constitutes
a pseudogene in humans and primates.215 FXRα is
expressed in liver, intestine, kidney, adrenal gland,
heart, and WAT,209,216,217 and encodes four FXRα

isoforms (FXRα1, FXRα2, FXRα3, and FXRα4),
resulting from differential use of two promoters
and alternative splicing.216,217 FXR can bind to and
activate or repress different FXR response elements
(FXREs), as a classical heterodimer with RXR or as a
monomer,215,218 interacting with different coactivator
complexes.219–224 BAs can activate the transcription of
FXR target genes at physiological concentrations act-
ing as hormones.210–212 Other FXRα ligands include
natural agonists (Cafestol), semi-synthetic ago-
nists [6α-ethyl-chenodeoxycholic acid (6α-ECDCA)],
synthetic agonists (GW9047, GW4064, fexarine
and fexaramine, 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-
tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid
(TTNPB), AGN29, and AGN31), natural antagonists
(guggulsterone), and synthetic antagonists (AGN34).
Some of these compounds act as partial antagonists or
gene-selective agonists/antagonists, depending on the
target gene.225–232

FXR and Bile Acid Homeostasis
FXR controls the enterohepatic circulation of BAs by
regulating the efflux of BAs from the liver, their intesti-
nal absorption, and hepatic reuptake.191 FXR regu-
lates genes involved in BA transport, conjugation, and
detoxification, as well as in BA (bile salt export pump
and multidrug resistance protein 2) and PL (h-MDR3
or m-MDR2) biliary secretion.162,213,214,233–240 In the
liver, FXR represses the transcription of the gene
encoding CYP7A1, through a bipartite mechanism
involving coordinated actions in the intestine and
the liver. In ileum, FXR induces the expression of
fibroblast growth factor 15 (FGF15),241,242 a hor-
mone that plays an overarching role in regulating BA
homeostasis. In liver, FXR induces the expression of
small heterodimer partner (SHP),243,244 an orphan NR
that binds the CYP7A1 promoter through interactions
with another NR, liver receptor homolog-1.189,243–246
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Induction of both FGF15 and SHP is required for
the FXR-mediated repression of CYP7A1 and BA
synthesis. FXR also represses the hepatic expression
of sterol 12α-hydroxylase (CYP8B1), an enzyme con-
trolling the ratio of the primary BA cholate and
β-muricholate in mice.247

FXR and Lipoprotein Homeostasis
Both FXR synthetic agonist and CDCA decrease
serum total cholesterol levels (due to reduced choles-
terol absorption and to a reduction in circulating
HDL-c), reduce the expression of apoAI, and increase
PLTP-mediated HDL remodeling.218,248–254 Addition-
ally, CDCA increases the expression of LDLR, leading
to decreased LDL-C plasma levels.255 In turn, the
inhibition of CYP7A1 results in increased hepato-
cyte cholesterol and oxysterols levels, activating LXR
with subsequent ubiquitation of LDLR.149,194 In mice,
FXR activation has been related to a net reduction in
plasma LDL-C levels,249,256,257 and these effects can be
seen also in humans, but only upon long-term CDCA
treatment.258,259 On the other hand, the FXR antag-
onist guggulsterone has been shown to reduce total
cholesterol and increase HDL serum levels.227 The
ability of BA to impact lipid metabolism has been first
described in cholesterol gallstone patients receiving
CDCA.260 CDCA, but not ursodeoxycholic acid, that
does not activate FXR, showed the ability of lowering
plasma TG in patients both with cholesterol gallstones
and hypertriglyceridemia.253,260–262 In mice, FXR
activation decreases plasma FFA and TG levels via
SHP-mediated suppression of SREBP-1c and its target
genes, and reduces VLDL-TG secretion, along with
a increased TG clearance.247–249,257,263–269 Addition-
ally, FXR can increase FA oxidation and fat utilization
via enhanced PPARα expression.270,271 Conversely,
FXR deficiency in rodents is associated with a massive
cholesterol and TG deposition in the liver as well as
elevated circulating FFA levels,247,257,268,269 whereas
in dyslipidemic patients BA-sequestrating agent treat-
ment results in increased plasma TG and VLDL
levels.252,272,273

FXR and Glucose Homeostasis
The link between FXR and glucose metabolism
emerged when altered BA profile was found to be
associated with type 2 diabetes in both humans and
animal models,274–276 suggesting that insulin may
affect BA metabolism. At transcriptional level, FXR
is positively regulated upon fasting and by glucose
administration, although being negatively regulated
by insulin and upon refeeding condition.277,278 In
fasted mice, BAs prevent gluconeogenesis, determining
hypoglycemia.277–281 Wild-type, obese, and insulin-
resistant mice expressing an activated form of FXR,

as well as those treated with FXR agonists (BAs
or synthetic agonist), show reduced plasma glucose,
hypoinsulinemia and improved insulin sensitivity,
paralleled by raised hepatic glycogen levels, and
increased hepatic signaling downstream of the
insulin receptor.256,257,268 BA or synthetic FXR
agonist administration induces glycogen synthase
kinase expression (promoting glycogen synthesis),
and decreased gluconeogenesis by repressing PEPCK,
G6P, and FBP-ase, via an FXR/SHP-dependent mech-
anism [involving hepatic nuclear factor 4α (HNF-
4α), proliferator-activated receptor-gamma coactiva-
tor 1α (PGC-1α), and the Forkhead Transcription
Factor].279,281,282 This effect of BAs in physiologi-
cal conditions could be mediated additionally by an
FXR-independent mechanism, involving HNF-4α.281

Paradoxically, FXR agonists, although being able to
stimulate glucose output from primary hepatocytes,
do not alter plasma glucose levels in fed wild-type
mice.280 All FXR effects seen in fasting mice upon
FXR agonists are abrogated in FXR knockout mice,
showing a lipo-atrophic phenotype, impaired glucose
tolerance, and insulin resistance.256,257,268 Loss of
FXR disrupts glucose homeostasis and impairs insulin
signaling in muscle and WAT where FXR is com-
pletely absent (muscle) or expressed at undetectable
level (WAT) in normal animals.256,268 These results
could be related to unbalances in the FGF15/19 modu-
lation of insulin signaling,283,284 or to other changes in
insulin or lipid signaling leading to elevated FFA and
TG production, and finally to increased circulating
FFA levels.249,256,257,268 On the other hand, plasma
glucose levels have been reported as unchanged,257

increased268 or reduced256 in FXR knockout mice sug-
gesting that other factors still need to be elucidated.
These results seem to be discordant, probably due to
differences in the genetic backgrounds of the mice or to
specific experimental procedures. As FXR modulates
the gluconeogenic program during the fasting period,
FXR-knockout mice show an altered regulation dur-
ing the shift from a glucose output regimen to a glu-
cose utilization one.277 Nevertheless, some of the BA
beneficial effects on the modulation of energy expen-
diture and metabolism can also be driven through an
FXR-independent pathway. CA-treated animals are
protected from diet-induced obesity through the acti-
vation of G-protein-coupled BA receptor 1 (Gpbar1,
also known as TGR5) and the induction of UCP-
1 in BAT.285 In this respect, the development of
dual FXR and TGR5 ligands may hold promise in
the management of metabolic disorders and obesity.
Additionally, an increasing body of evidence supports
a role for gut microbiota abnormalities in the perpet-
uation of the main features of MS, such as low grade
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FIGURE 5 | Schematic representation of farnesoid X receptor (FXR) transcription activation (left): as a heterodimer of retinoid X receptors (RXR),
FXR binds the FXR response elements (FXREs). The most common FXRE motif consists of inverted repeats (IR) of hexameric sequences AGGTCA,
interspaced only by a single nucleotide spacer (IR-1). Effects of FXR activation in tissues involved in metabolic homeostasis (right): FXR plays the key
role in bile acid (BA) metabolism, reducing hepatic BA synthesis, increasing BA secretion into bile, and inhibiting intestinal BA reabsorption. FXR
additionally modulates cholesterol metabolism [increasing the hepatic uptake of low-density lipoprotein (LDL) cholesterol, reducing the conversion of
cholesterol to BA, and promoting high-density lipoprotein (HDL) remodeling], reduces the circulating levels of glucose (promoting glycogen synthesis
and inhibiting gluconeogenesis), free fatty acids (FFA), and triglycerides (TG; promoting FA oxidation while inhibiting FFA and TG synthesis). The
reduction of the cholesterol conversion to BA can be achieved directily (activating FXR in the liver), or indirectly via an intestinal FXR mediated
increase of FGF 15 (see asterisks).

of inflammation and insulin resistance.286,287 Inagaki
et al. found that FXR activation increases the expres-
sion of target genes exhibiting intestinal antibacterial
properties (i.e., iNOS and IL-18), leading to a negative
modulation of gut microflora.288 Further investigation
on the FXR-mediated modification of gut microbiota
in a setting of MS and insulin resistance may disclose
unknown mechanisms by which BA contribute to the
whole-body energy homeostasis.

FXR and the Etiology of Atherosclerosis
FXR has also been implicated in the etiology of
atherosclerosis not only due to the metabolic rea-
sons we just discussed, but also via the modulation
of inflammation.289,290 Indeed, FXR is expressed in
endothelium,291 vascular smooth muscle cells,292 and
atherosclerotic lesions, but not in the macrophages.269

The roles at this level are under debate, as BAs admin-
istration has been linked to responses that could
be both beneficial,291 or not,293 for atherosclerosis.
However, FXR knockout mice fed high-fat or high-
cholesterol diet show a pro-atherogenic metabolic
profile, which is not paralleled by an enhanced suscep-
tibility to atherosclerosis.269,294 As the murine model
does not develop spontaneously atherosclerosis, FXR
knockout mice have been crossed with genetic models
of atherosclerosis. Unfortunately, the effects of loss of
FXR in models of atherosclerosis were not disclosed,
as these models showed contrasting and case-specific
outcomes depending on the genetic background of the
mice.269,294,295

Although FXR activation shows positive effects
on lipid and glucose metabolism (Figure 5), pointing
on the possibility of FXR as a possible target for MS
treatment, these positive effects are not paralleled by
sufficient data on the modulation of the atheroscle-
rotic phenomenon by FXR agonists. The exact role
of FXR on the atherogenic process is still poorly
understood and should be clarified by further inves-
tigations before going into clinical confirmation in
humans.

CONCLUSIONS

The rapid escalation of the incidence of obesity and
MS calls for a careful appraisal of the effectiveness of
the current therapies. Among the several therapeutic
approaches used over the last decades, only lifestyle
modifications and metformin are considered truly
effective in the MS clinical picture. NRs, master tran-
scriptional regulators of the metabolic homeostasis,
are ideal targets for the pharmacological modulation
of metabolic networks. Fibrates (PPARα agonists) and
TZDs (PPARγ agonists) are well-established thera-
pies for hypertriglyceridemia and diabetes, but their
long-term benefits are still under discussion. Another
promising option for hypertriglyceridemia could be
the activation of FXR. In the treatment of MS-
associated dyslipidemia, LXR ligands are also promis-
ing, as LXR activation is able to lower total cholesterol
levels and increase nascent HDL levels, thus inducing
RCT. A tissue-selective activation may prevent the
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TABLE 1 Relevance of Nuclear Receptors in Metabolic Syndrome

PPARα PPARβ/δ PPARγ LXR FXR

Expression

Liver
Kidney
Heart 

Skeletal Muscle 
Small Intestine 

BAT 
Immune cells 
Endothelium 

Heart 
Skeletal Muscle 
Adipose tissue 
Small Intestine 

Liver
Immune cells 

Ubiquitous 

(γ1)
WAT

Immune cells 
Colon
Liver

Kidney
Skeletal Muscle 

(α)
Intestine

Liver
Macrophages

WAT
Skeletal Muscle 

Kidney
Lung 

Spleen
Adrenal gland 

(α)
Liver

Intestine
Kidney

Adrenal gland 
Heart 
WAT

Endothelium 
Vascular SMC 

(γ2)
WAT
BAT 

(β)
Ubiquitous

(β)
Pseudogene in 

humans 

Agonists

Endogenous

Eicosanoids

FAs

16:0/18:1-GPC 

PGI
carba-prostacyclin 

EPA

ARA 

dihomo-γ-linoleic
acid

PG -A1, -E2, -D2 

Fas

Eicosanoids
(13-HODE and 9 

HODE) 

Prostanoids
(15d-PGJ2) 

Oxysterols: 
22(R)-, 24(S)-, 27- 

and 24(S), 25-
hydroxy cholesterol 

CA
CDCA

Approved
Clofibrate

Fenofibrate No Pioglitazone 
Rosiglitazone No No

-Clinical indications Hypertriglyceridemia 
Comb. dyslipidemia / Type II Diabetes / /

Experimental

LY518674 

PPAR γ/α agonists 
(TDZ18, Harmine, 

etc.) 

GW501516 
GW0742 
KD-3010 

MBX-8025 

SPARMs

PPARγ/α agonists 
(TDZ18, Harmine, 

etc.) 

T0 901317 
GW3965 

Cafestol 
6α-ECDCA

GW9047 
GW4064 
Fexarine

Fexaramine 
TTNPB
AGN29 
AGN31 

Main Metabolic Actions

Weight =/↓ ↓↓ ↑ = =
Fatty Liver ↓ ↓ ↓ ↑ ↓
Plasma Glucose = ↓ ↓↓ ↓ ↓
Insulin Resistance = ↓↓ ↓↓ ↓ ↓
Plasma FFAs ↓↓ ↓ ↓ ↑ ↓
Plasma TGs ↓↓ ↓ (Pioglitazone) ↓

(Rosiglitazone)  = 
↑↑ ↓

Plasma LDL-c = ↓ (Pioglitazone)    = 
(Rosiglitazone) ↑

↓ ↓
Plasma HDL-c ↑ ↑↑ ↑ ↑↑ ↓
RCT ↑ ↑↑ ↑ ↑↑ ↑
Inflammation ↓ ↓ ↓ ↓ ↓

The table provides an overview of nuclear receptors’ tissue distribution, known agonists, and biological functions relevant for the pathophysiology and treatment
of metabolic syndrome.
15d-PGJ2, 15-deoxy-�12,14-prostaglandin J2; 16:0/18:1-GPC, palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine; ARA, arachidonic acid; BAT, brown adipose
tissue; CA, cholic acid; CDCA, chenodeoxycholic acid; 6α-ECDCA, 6α-ethyl-chenodeoxycholic acid; EPA, eicosapentaenoic acid; FA, fatty acids; FFA, free
FA; FXR, farnesoid X receptor; HODE, hydroxyoctadecanoic acid; LDL, low density lipoprotein; LXR, liver X receptors; HDL, high density lipoprotein; PG,
prostaglandin; PGI, prostacyclin; RCT, reverse cholesterol transport; SMC, smooth muscle cells; SPARM, selective PPARγ modulator; TDZ, thiazolidinediones;
TG, Triglycerides; TTNPB, 4-[(E)-2-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid; WAT, white adipose tissue.
List of symbols: ‘↑’ means increase; ‘=’ means no variation; ‘↓’ means reduction.
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well-documented LXR-mediated hepatic lipogenesis.
Additionally, PPARβ/δ activation has been proposed
as a mimetic of physical exercise by optimizing phys-
ical endurance, energy expenditure, and RCT. The
subsequent beneficial effects on weight control and
hepatic fitness could also implicate PPARβ/δ ago-
nists as candidates for the treatment of metabolic

disorders. We know that lipid-sensing NR pathways
can explain the metabolic scenario that leads to MS
and atherosclerosis. In the next few years, accord-
ing to the NR activities summarized in Table 1, it is
extremely important to test the potential of pharma-
cological strategies to target FXR, LXR, and PPARβ/δ
for the treatment of MS.
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